
Piglet – Interactive and Platform Transparent Analytics for
RDF & Dynamic Data

Stefan Hagedorn
TU Ilmenau, Germany

stefan.hagedorn@tu-ilmenau.de

Kai-Uwe Sattler
TU Ilmenau, Germany
kus@tu-ilmenau.de

ABSTRACT
Data analytics has gained more and more focus during recent
years and many data processing platforms have been devel-
oped. They all provide a powerful but often complex API
that users have to learn. Furthermore, results can only be
stored or printed, without any possibility for visualization.
In this paper we present Piglet, a compiler for the high-level
Pig Latin script language that generates code for various
platforms like Spark, Flink, Storm, and PipeFabric. Piglet
lets users write elegant code with extensions for SPARQL
and RDF, as well as support for streaming data. An inte-
gration into the notebook-based frontend Zeppelin provides
a homogeneous and interactive user interface for exploring,
analyzing, and visualizing data from different sources and
lets users share their scripts and results.

1. INTRODUCTION
Exploring large and often unknown data sets is one of the

most challenging tasks in unlocking, preparing, and analyz-
ing data to support decisions and derive models in various
domains. Data exploration often implies the incremental
analysis of data sets, starting with data cleaning and remov-
ing invalid entries and then finding a way to the informa-
tion of interest. It requires easy to use interactive interfaces
to quickly sketch queries and produce first results, instead
of writing complex source code. Immediate visualization
is another important factor in order to evaluate the next
exploration steps. Finally, particularly dynamic data sets
represent a big challenge for interactive exploration simply
due to the amount of data and the continuous changes.

During recent years, many data processing platforms have
been developed. The MapReduce paradigm and its imple-
mentation in Hadoop allowed for fault-tolerant and scalable
analyses of large data sets. The Pig engine [3] provides the
script language Pig Latin that allows people to avoid writing
plain Java code. Pig Latin scripts are compiled into MapRe-
duce programs, which are then executed on a Hadoop clus-
ter.

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author’s site if the Material is used in electronic media.
WWW’16 Companion, April 11–15, 2016, Montréal, Québec, Canada.
ACM 978-1-4503-4144-8/16/04.
http://dx.doi.org/10.1145/2872518.2890530.

However, MapReduce jobs are slow also for small data sets
and thus, new projects started and quickly became popular.
The Apache Spark1 platform uses an in memory data struc-
ture called Resilient Distributed Dataset (RDD) to speed-
up execution. To support stream processing, Spark provides
micro batches that wrap incoming values in RDDs and pass
them to the Spark engine. Along with Spark, the Apache
Flink2 has become popular, too. It provides batch process-
ing as well as a pipelined streaming engine.

Although these two platforms have gained much atten-
tion recently, in our opinion they miss some key features that
would help data workers to be more efficient and productive:
Spark, Flink, and other platforms provide an API for various
programming languages, e.g., Java, Scala, or Python. Users
that want to use these platforms, have to write their pro-
grams in any of the supported language. However, this may
be a hard task for non-technically minded users with no pro-
gramming background. Also, if they ever need to change the
underlying platform, all programs have to be rewritten from
scratch to adapt to the new API. Furthermore, these plat-
forms only support (nested) tuple data with a fixed schema,
but have no special support for Linked Data, making it hard
to analyze RDF data sets and to query the vast amount of
information provided in the Linked Open Data cloud. The
contribution of Piglet is to bring all these fields together:

• Piglet allows to express the analysis task in the high
level script language Pig Latin that was extended to
support SPARQL, stream processing, as well as com-
plex event processing (CEP) operations.

• Input scripts are compiled into programs for any of the
different supported backends, making the underlying
platform transparent to the user.

• The integration with the Apache Zeppelin3 project al-
lows to easily create Pig Latin scripts in a browser
based editor, execute them and to visualize and share
the results.

2. PIGLET
Piglet4 is a code generator that creates programs for vari-

ous platforms from a Pig Latin input script. In Piglet terms,
a backend is a library that encapsulates a specific platform.
We follow a plugin-style approach so that users can create
their own backends that only have to comply to an inter-
face through which Piglet can communicate with it and it

1https://spark.apache.org
2https://flink.apache.org
3https://zeppelin.incubator.apache.org/
4available at https://github.com/ksattler/piglet

https://spark.apache.org
https://flink.apache.org
https://zeppelin.incubator.apache.org/
https://github.com/ksattler/piglet

Execution Environment
Hadoop Cluster

Program/Job

Worker Nodes

Console / REPLPig
Latin

Piglet

Spark Flink Storm

Backends

Code Generator YARN

Mesos

Figure 1: Overview of Piglets internal architecure.

has to be placed in a location where it can be found at
runtime. Currently, we support the backends Spark, Flink,
Storm5, PipeFabric [4], as well as the original Pig engine.
The overall architecture is depicted in Fig. 1. Piglet accepts
script files as input, but also provides an interactive shell,
similar to the Spark shell or Pig’s grunt shell, were users
can enter their commands. The scripts are passed to the
code generator which translates them into a DataflowPlan,
our internal intermediate representation. In an analysis and
rewriting step, transformations are applied for optimization
and SPARQL support (see below). Using the logical oper-
ators in the plan, the code generator creates the program
for the chosen backend and packs it into an archive that
is sent to the execution environment. It is the task of the
backend to provide methods to submit the job archive to the
platform. While we create Scala code for Spark and Flink,
we produce C++ programs for Storm and PipeFabric. The
code generator uses templates files provided by the back-
ends, making the API of the target platform is transparent
to Piglet. For the original Pig engine, we simply pass the
Pig script as is to their compiler.

Piglet supports all operators and features as the original
Pig Latin language, but also includes extensions and new
language features.

SPARQL.
The Linked Open Data principle aims at providing in-

formation in a structured, machine readable format called
RDF. The de-facto standard query language for RDF data is
SPARQL whose main part are basic graph patterns (BGP)
that are used to formulate the query. However, original
Pig Latin has no support for SPARQL and can only formu-
late such queries using complex and cumbersome Join/Filter
constructs. Piglet supports such BGP by extending Pig
Latin with an additional BGP_FILTER operator.

rdf = RDFLOAD(’file.nt’);
filtered = BGP_FILTER rdf BY {
?artist <produced> ?record .
?artist <country> ?country .
?record <release> "2015" .
};
aggr = GROUP filtered BY country;

The above example loads a local RDF file and finds all artists
that have released a record in 2015. The variable names from
the BGP_FILTER are available in the rest of the script for fur-
ther processing. However, Pig’s native tuple data model
does not fit the triple model of RDF well. Therefore, in [2],
we analyzed rewriting rules that transform BGP_FILTERs into
traditional Pig statements (i.e. Join/Filter combinations)

5https://storm.apache.org/

and introduced a “tuplified” schema with which RDF pro-
cessing can be improved significantly. To load remote RDF
data, we provide an additional SPARQLLoader that sends a
query to a SPARQL endpoint and makes the result available
in the script:

rdf = LOAD ’http://endpoint.org:8080/sparql’
USING SPARQLLoader(
’CONSTRUCT ?s dbo:populationTotal ?pop
WHERE { ?s rdf:type dbpedia:City .

?s dbo:populationTotal ?pop }’)
AS (subject, predicate, object);

Stream processing & CEP.
Pig Latin was designed to create MapReduce programs

that process batch data. Piglet, however, also supports
stream processing which requires some new operators. To
connect to a stream and receive and send data, Piglet pro-
vides special loader functions that connect to a TCP socket
or communicate via ZeroMQ. A core operation in stream
processing is the window function that holds a snapshot of
the stream on which aggregates can be computed. To sup-
port windows, we introduced the WINDOW operator that can
be used to define windows on a range of elements or on a
period of time. The following example shows a word count
example with a window of the most recent 5 seconds which
is moved by 5 seconds, making it a tumbling window. The
window content is grouped on the first column to count the
number of words currently being in the window.

a = SOCKET_READ ’tcp://127.0.0.1:8889’;
w = WINDOW a RANGE 5 seconds SLIDE RANGE 5 seconds;
grpd = GROUP w BY $0;
cntd = FOREACH grpd GENERATE group, COUNT(w);

When working on streams, a frequent task is to identify re-
curring patterns. This can be achieved by complex event
processing (CEP) techniques, where users define sequences
and combinations of events using logical operators (conjuc-
tion, disjunction, negation) and temporal operators (e.g. se-
quence). Piglet provides the MATCH_EVENT operator that al-
lows to define the event pattern using sequences and logical
operators as well as additional filters and time ranges. This
example shows how to define the pattern to detect a complex
event based on the Linear Road benchmark [1]:

a = SOCKET_READ ’tcp://127.0.0.1:8889’ AS (ts:long,
id: int, speed double, dir: int, seg: int);

b = WINODW a RANGE 60 seconds;
c = MATCH_EVENT b PATTERN SEQ (A, B) WITH (B:

(id == A.id && dir == A.dir && seg == A.Seg));

This finds all sequences if events (vehicles) that are in the
same road segment and drive in the same direction within a
time window of 60 seconds.

UDF.
User defined functions (UDF) can be included via the

known REGISTER statement which includes jar files that con-
tain functions the script wants to use. Often, users just
need single methods that perform a specific task which is
not directly available in Pig Latin. Creating an extra li-
brary for just one operation includes too much overhead and
thus, in Piglet users have the possibility to directly embed
code inside a <% . . . %> environment. The following snipped
shows the definition of a Scala method that computes the
Euclidean distance between a reference point and a point
from the data set.

https://storm.apache.org/

<%
def euclid(x: Double, y: Double): Double = {
val refX = 20
val refY = 10
return Math.sqrt(Math.pow(refX - x ,2)

+ Math.pow(refY - y,2))
}
%>

raw = LOAD ’file.csv’ as (x: double, y: double);
dists = FOREACH raw GENERATE euclid(x,y);

Piglet also allows to create macros, as known from tradi-
tional Pig Latin, using the DEFINE keyword. These macros
can be used for re-occurring Pig statements as well as to
shorten the call of some UDF in a library.

Integration & API.
A famous tool for data scientists is the powerful R6 project

for statistical computing. To easily integrate R into the an-
alytic tasks that are created with Piglet, we allow to include
R code into Piglet scripts:

out = RSCRIPT in USING ’<R code>’;

This can be used to easily run R functions or create plots.
We also provide a convenient API to include Piglet code

into Scala or Java programs. Just like many applications
include SQL statements in their code to access (relational)
databases, we believe that a lot of users will need to integrate
the results of their Big Data analyses into their programs.
Therefore, our API lets users easily formulate any Pig Latin
code, execute it on a (remote) cluster, and retrieve the re-
sults back in their program:

val plan = piglet"a = LOAD ’file.csv’; DUMP a;"
val result = plan.execute()

This is achieved by a custom Scala string interpolation func-
tion piglet that compiles the given string into a DataflowPlan
which can be executed (currently, in batch mode only).

3. DECLARATIVE DATA ANALYSIS WITH
NOTEBOOKS

Piglet was designed to allow everyone to run data analysis
tasks without any programming skills by using the high-level
dataflow language Pig Latin. Users write their scripts in a
text editor or enter them in our shell and the results will
be saved to disk or printed on the console. However, when
exploring data sets users need visualization and collect sev-
eral scripts and plots in one place. From this need, the idea
of interactive documents and notebooks emerged. Apart
from the opportunity to combine text, executable scripts and
plots in a single (web) document, the most interesting as-
pect of notebooks like Jupyter and Zeppelin is interactivity:
previously entered commands and expressions can be mod-
ified which immediately updates former results and plots.
This interaction paradigm is very well-suited for exploring
and analyzing large and dynamic data sets. In Zeppelin a
notebook consists of paragraphs, where each paragraph con-
tains text or code and optionally the result and visualization.
The code is passed to an interpreter, that can be selected for
each paragraph individually, which communicates with the
actual platform to submit the job and retrieve the results.

6https://www.r-project.org/

Zeppelin already comes with a lot of interpreters for various
languages: Markdown for text and wiki-like documentation,
Spark, SQL, and many more.

Piglet includes a Zeppelin interpreter so that users can
simply enter their Pig scripts in Zeppelin and execute them
using Piglet. An instance of the Piglet interpreter generates
code for one target backend. This target backend and other
parameters can be configured via the properties page of Zep-
pelin. Hence, users have the full interactive environment of
Zeppelin combined with the flexibility and power of Piglet.

Fig. 2 shows a screenshot of a Zeppelin notebook with one
paragraph. The paragraph shows a Piglet script that loads
some (preprocessed) DBpedia files and applies a BGP_FILTER

to find the regions persons were born in. The result of that
BGP_FILTER is then processed just like “normal” data and
grouped by region to count the number of people for each
region. As an extension to Pig Latin, Piglet includes the
DISPLAY operator that prepares the result formatting for vi-
sualization in Zeppelin.

4. DEMO
During the demo session, the audience will be able to in-

teract with Piglet itself and the Zeppelin frontend. Since
Zeppelin is web based, the access can either be through our
laptop or via (own) mobile devices. Users will be able to run
our prepared analysis scripts, edit them, or create new ones
as well as add new paragraphs and notebooks to get their
own impressions.

Static Data.
We will prepare sample static data sets from real world

sources and prepare scripts to process them. Our static data
sets will include CSV files taken from GDELT7, as well as
RDF data from DBpedia. The GDELT projcet provides
event data extracted from news reports of various web sites.
Our scripts will demonstrate analytic workflows that make
use of both, CSV and RDF data, and also join flat CSV data
with RDF. For loading RDF data, we will include scripts
that retrieve data live from remote SPARQL endpoints.

Users will be able to run one and the same script on dif-
ferent backends without any changes, inspect the produced
code, and compare the results. Using the integration in Zep-
pelin, the results can be visualized immediately.

Dynamic Data.
To show the support for the stream processing backends,

we further include scripts that work on such data streams.
These scripts will connect to local as well as to remote
streams and process incoming tuples. One of these streams
will be live data from Twitter’s public streams. Our sample
scripts will compute aggregates on the incoming Tweets, e.g.
the average number of tweets with a specific hashtag in the
last 10 minutes. Additionally, we also include a data genera-
tor that streams the previously mentioned (local) static data
sets, to be able to compare to the results of batch processing.

Same as for static data, users can run each script on all
supported backends without changing any line in the script.
Furthermore, we will show sample workflows that combine
CSV, RDF, and streaming data in one script.

7http://www.gdeltproject.org/

https://www.r-project.org/
http://www.gdeltproject.org/

Figure 2: A screenshot of Zeppelin with a Piglet script that contains a BGP_FILTER mixed with traditional
operators.

Audience Interaction.
Our prepared scripts can be changed by the demo audi-

ence live either through the Zeppelin interface, in the script
files, or can be entered in our REPL shell.

On the command line, backends can be switched by just
setting a command line argument, whereas in Zeppelin, users
have to change the target backend in the interpreter set-
tings. For convenience, we will setup an individual Piglet
interpreter for each supported backend, so that users can
easily switch between them by simply changing the magic
word for a paragraph, e.g., %piglet_spark, %piglet_flink.
As result visualization is completely performed by Zeppelin,
users can select the appropriate chart type using the pro-
vided buttons.

5. SUMMARY & FUTURE WORK
Piglet is a compiler and code generator for the Pig Latin

script language with the goal to unify and simplify data an-
alytics. Piglet supports both batch and stream processing
and generates code for various platforms like Spark, Flink,
and Storm. Its support for BGP filters allows easy integra-
tion and querying of Linked Open Data, both from local files
as well as from remote endpoints. We provide a Zeppelin in-
tegration for interactive data analytics and visualization.

Our ongoing work focuses on optimization: When scripts
are executed repeatedly, expensive operations are also exe-

cuted every time, although their result has not changed since
the last run. We collect runtime information of the gener-
ated program, try to identify such expensive tasks and mate-
rialize their intermediate results if this promises to speed-up
subsequent runs. Furthermore, in future work we are going
to investigate how to support iterations in Pig scripts.

Acknowledgements.
This work was partially funded by the German Research

Foundation (DFG) under grant no. SA782/22

6. REFERENCES
[1] A. Arasu, M. Cherniack, E. Galvez, D. Maier, A. S.

Maskey, E. Ryvkina, M. Stonebraker, and R. Tibbetts.
Linear road: a stream data management benchmark. In
PVLDB, pages 480–491, 2004.

[2] S. Hagedorn, K. Hose, and K.-U. Sattler. SPARQling
Pig - Processing Linked Data with Pig Latin. In BTW,
March 2015.

[3] C. Olston, B. Reed, U. Srivastava, R. Kumar, and
A. Tomkins. Pig latin: a not-so-foreign language for
data processing. In SIGMOD, 2008.

[4] O. Saleh and K.-U. Sattler. Debs grand challenge: The
pipeflow approach. In DEBS, pages 326–327, New York,
NY, USA, 2015. ACM.

	Introduction
	Piglet
	Declarative Data Analysis with Notebooks
	Demo
	Summary & Future Work
	References

